
Machine Learning Techniques Applied to Flight Test Data Evaluation 

Kelton Busby, kbusby@aerotec.com, AeroTEC, Inc (USA), Rebecca Hattery, rhattery@aerotec.com, AeroTEC, Inc 
(USA) 

 

ABSTRACT 

This paper proposes an application of machine-learning methods to the analysis of flight test data. A set of training data is 
used to develop relationships between measurands and generate predicted behavior. These relationships 
are forecast onto data from the same aircraft model to identify unpredicted measurand behavior. The application of this 
method may significantly reduce post-test identification time of problematic measurands. Statistical analysis methods are 
used to determine quality of identified relationships and reduce instances of confirmation bias. The importance of a 
carefully selected training data set and development of robust relationships with low collinearity is emphasized. The 
developed application demonstrates faster instrumentation failures diagnosis than traditional methods. An area 
of continued research includes application of highly accurate models developed for an aircraft to reduce required 
instrumentation. 

 

1. INTRODUCTION 

Safety, technical integrity, and certification requirements 
generate the need to monitor and record aircraft test data 
from existing aircraft bus data and installed measurands. 
An aircraft development and certification program can 
require thousands of simultaneously recorded 
parameters. Analysis of data gathered on test vehicles 
traditionally requires labor intensive methods for 
managing sensor health and data integrity. Currently, 
data is monitored during and after testing by subject 
matter experts (SMEs). The SME relies on 
instrumentation engineers to ensure measurands are 
functioning correctly. If a measurand is determined to be 
malfunctioning, the SME documents the issue and 
instrumentation engineers address or correct the issue. 
In sensor networks that are not monitored for errors, bad 
data may be recorded for an extended period. 
Automated analysis can aid in prompt detection of 
sensor systems that have gone awry. Some potential 
uses of this information are: Early detection of test or 
safety critical sensor failures, detection of out of 
calibration exposure, drift, or unusual response, 
reduction of required sensor installations, increased 
redundancy in control systems, and data replication and 
replacement for faulty parameters. This paper will 
present an overview of machine learning terminology 
and theory to familiarize the reader with the proposed 
techniques. A methodology is described which is 
employed to analyze sets of flight test data. The data set 
will be described. The machine learning methods will be 
used to locate and predict measurand health. A brief 
discussion of areas of future research and industry 
potential is in the conclusion of the paper. 

2. METHODOLOGY - THEORY 

This paper presents a methodology for using machine 
learning methods to detect and handle unpredicted 
measurand behavior. There are many critical 
components to creating a reliable method for detecting 
such abnormalities. The methods found to be successful 
in this paper are not meant to be comprehensive or 
exhaustive but represent successful applications on 
flight test data as discussed in Section 4. The general 
step by step procedure for detecting data abnormalities 

using machine learning is:  

• Gathering Data 

• Exploration & Cleaning 

• Selecting a Model 

• Analyzing Results.  

Prior to reviewing the steps in detail, there is a brief 
introduction to relevant terminology used in this paper.  

2.1. Terminology 

This paper uses terminology present in data science and 
statistical or machine learning literature. Some terms are 
less common in test engineering. Those are laid out here 
for clarity.  

Feature – A column in a dataset, Figure 1. Represents a 
characteristic or property of an observation.  

Hyperparameter – A control input to a model that 
adjusts the model algorithm’s optimization function. 

Measurand – Recorded data representing some 
physical or engineering phenomena. Ex. Temperature 

Model – A quantitative response as a function of 
independent variables. Approximates the true response 
of a dependent variable as a function of the independent 
variables. 

Overfitting – model that applies relationships between 
the dependent variable and the independent variables 
that do not actually exist. These perceived relationships 
are noise and are ideally not be included in the model. 

Prediction – The output of a model given values for the 
independent variables in the model. 

Training Data Set – Recorded data used to generate a 
model. 

Test Data Set – Recorded data used to perform final 
performance checks on the model. 

Underfitting – An underfit model misses true 
relationships between the dependent variable and the 
independent variables. 

Validation Data Set – Recorded data used to analyze 
model performance and tune the model after model is 
created / fit / generated from training data 
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Figure 1: Breaking Down Available Data to Features 
with Time Index 

2.2. The Dataset 

A set of historical test data from a test article is necessary 
to use this paper’s methodology to detect unpredicted 
measurand behavior. The data is used to develop 
statistical relationships between measurands. The 
following are important considerations in gathering data 
to ensure success in implementation: Data formatting, 
time alignment, and sampling rate. The data format is 
assumed to be tabular where rows represent samples 
and columns represent features. An example of properly 
formatted data is provided in Table 1. 

2.2.1. Time Alignment 

Time series data, data capture synchronously and 
indexed in time order at a common time spacing, is a key 
component for developing strong statistical 
relationships. Synchronously captured time series data 
is the most common data type from flight test. Data 
captured asynchronously cannot be relied on to create a 
consistent usable relationship that generalizes well to 
future data. The more complex the data system or the 
larger the number of measurements, the more critical 
alignment becomes. Data manipulation may be required 
for out of alignment data. Methods exist for dealing with 
unevenly spaced time series, such as linear 
interpolation, but the quantification of introduced biases 
is difficult. Table 1 presents a set of time-aligned 
synchronous data is below. Each feature is sampled 
every second on the second. 

Table 1: Time Aligned Sample Data 

Time Exhaust 
Temp 

Inlet 
Temp 

RPM Manif. 
Press. 

12:33:57 1320 76 2200 12.3 

Time Exhaust 
Temp 

Inlet 
Temp 

RPM Manif. 
Press. 

12:33:58 1320 76 2210 12.3 

12:33:59 1314 77 2210 12.4 

12:34:00 1320 76 2215 12.4 

12”34:01 1317 75 2230 12.4 

 

2.2.2. Sample Rate 

Sample rate is the frequency at which a measurement is 
taken. The sample rate may vary between features; this 
variance may also cause time asynchronization. Data 
sample rates and variation should be considered before 
using data as part of a machine learning application. If 
data is not all taken at the same sample rate, imputation, 
interpolation, up/down sampling, or data removal needs 
performed. If the slower sample rate data contains the 
dependent variable, simple down-sampling of the 
independent variables with higher sample rates is 
enough. If the higher sample rate data contains the 
dependent variable, then the independent variables with 
lower sample rates will need to be up-sampled. 

2.3. Exploration & Cleaning 

Data Exploration is a data analysis technique that 
provides insights into the data. For numeric data, data 
exploration includes plotting feature distributions, 
creating correlation matrices, and reviewing statistical 
summaries to better comprehend how the data looks, 
what kind of variability exists, and the presence of 
missing values in features. The result of is an 
understanding of the types of data, the shape of the data 
distributions, significant statistics about the data, and 
what relationships exist in the data set. 

In flight test, data is usually numeric time series data. 
This paper assumes numeric data which is either 
numeric by default (temperature measurement) or by 
feature engineering (discretization). 

Data visualization is the use of plots of data statistics and 
relationships to understand more about the data set 
including the data distribution shapes, range, outliers, 
patterns, and multicollinearity. Different models used in 
this methodology make a variety of assumptions about 
the data which need to be understood and handled. If 
many linear relationships exist in the data, it may be wise 
to use primarily linear models like multiple linear 
regression. Many linear relationships are a sign to check 
for multicollinearity, which can occur when independent 
variables are highly correlated with one another. 
Multicollinearity is a common issue with test data and 
should be handled appropriately as its impact on models 
can be significant.  

An easy way to detect multicollinearity in the data is to 
check the Pearson correlation coefficient (PCC) between 
each feature in the data. The PCC is often visualized in 
a correlation matrix. The PCC is distributed in the 
following manner: -1 is perfectly negatively linearly 
correlated, 0 is not linearly correlated, and 1 is perfectly 
positively linearly correlated. A correlation matrix shows 
the PCC between every feature in the dataset in a table.  
A PCC matrix for some sample data is presented in 



Table 2.  

Table 2: Correlation Matrix Showing PCCs 

 Exhaust 
Temp 

Inlet 
Temp 

RPM Manif. 
Press. 

Exhaust 
Temp 

1.000 -0.395 -0.281 -0.612 

Inlet 
Temp 

-0.35 1.000 -0.645 0.000 

RPM -0.281 -0.645 1.000 0.667 

Manif. 
Press. 

-0.612 0.000 0.667 1.000 

 

2.3.1. Cleaning 

Clean data makes for better model performance, 
reduces noise, and ensures that data used by the model 
are valid, accurate, complete, and consistent. Cleaning 
includes building an automated process for ensuring 
datatypes are correct, missing data is handled, 
synchronously sampled data is aligned, and dates are 
formatted and recognized. Clean data is significantly 
easier to work with, easier to maintain, and can be 
pushed through machine learning algorithms without 
errors. 

Cleaning is usually handed by building a program, script, 
or algorithm in a programming language like Python. 
Cleaned data should be consistent in format for input into 
a machine learning algorithm. Figure 2 compares data 
before and after cleaning. 

 

Figure 2: Data Before (a) and After (b) Cleaning 

2.4. Selecting a Model 

After Data Exploration it is possible to make a model 
selection. An interesting aspect of identifying 
unpredicted measurand behavior with machine learning 

is that almost every feature in the dataset is eventually a 
dependent variable to be modeled using the rest of the 
dataset, as shown in Figure 3. This is unlike traditional 
machine learning problems which have a single 
dependent variable and many independent variables. 

 

Figure 3: Difference between Traditional (a) and 
Detecting Abnormalities (b) Machine Learning 

Problems 

The work presented here focuses on a problem type in 
which the dependent variables are numeric and have 
relationships with other numeric data. This paper 
focuses on this type of problem. In algorithms or machine 
learning this is called a supervised regression problem. 
Supervised means that there is a training set available to 
feed through the algorithm with known independent and 
dependent values. Regression refers to the fact that the 
result of a prediction is a value for the dependent 
variable. 

There are many algorithms compatible with solving 
supervised regression problems, including simple linear 
regression, multiple linear regression, polynomial 
regression, multilayer perceptron (Neural Network), and 
Regression Tree / Random Forest. This paper will focus 
on multiple linear regression. Model requirements can 
drive model selection as much as model performance. 
An example requirement is that an engineer must be 
able to interpret how a prediction was made.  

A parametric model, which takes on a specific function 
like linear regression, is interpretable. Non-parametric 
models have the flexibility associated with not making 
any explicit assumptions about the form of a function, but 
as a result do not provide interpretable results. The result 
is simply the result after passing independent variable 
values through the model.  

Training multiple models is a productive way to get a 
baseline set of performance metrics to compare against.  

In this paper, accuracy, as the proximity of the predicted 
value to the actual value, is the most critical performance 
metric. Further details on understanding model 



performance follows in Section 2.6.  

Models can be applied by loading the data into any 
analysis tool with machine learning libraries or the 
functionality to implement learning algorithms. It is 
important to select a software tool or suite of tools 
capable of loading data, training a model, and reviewing 
results. Python 3, R, and MATLAB are all suitable tools 
for this type of analysis. The research in this paper was 
performed using Python 3. 

With cleaned and prepared data, it is possible to model 
a feature of the dataset. A model in this context makes 
some prediction about the value of one feature 
(parameter, column, or measurement) given the values 
of multiple other features in the dataset. The prediction 
is a function of the independent variables. 

The model built approximates the true function of the 
dependent variable given the information in the dataset. 
The predicted result given the values of relevant 
independent variables is the result of interest. 

As an example: A multiple linear regression model takes 
on the following form: 

𝑦̂ = β0 + β1𝑋1 + β2𝑋2 + ⋯ + β𝑛𝑋𝑛 

Where: 

• 𝑦̂ represents a prediction 

• 𝛽 represents coefficients determined by the 
algorithm 

• 𝑋 represents the independent variables used in 
the model 

With this function, it is possible to make predictions when 
provided with values for all 𝑋.  𝛽 values are determined 
by the model by minimizing the error in the prediction on 
the validation set. 

2.4.1. Applying a Model to the Data 

To properly evaluate the results of a model, the historical 
data must be split into training, validation, and test sets, 
Figure 4. A common way to split up the available 
historical data is to split it 80/20 twice. The first split gives 
training and testing data. Then the training data is split 
again 80/20 into training and validation. The test data is 
set aside until there are final model evaluations to be 
done. 

 

Figure 4: Train, Validation, and Test Split 

Fitting the model programmatically is often as simple as 
calling a fitting function in a programming language like 
Python on the independent variables with the dependent 
result. When this is complete, the model can be 
evaluated. 

 

2.5. Feature Selection & Regularization 

With the data split into train/validation/test sets, a model 
can be built with every feature from a dataset. In general, 
it is better to reduce the independent features in each 
model to only relevant features. There are multiple 
reasons why this is the case, including requiring less 
data, reducing dependencies, improving interpretability, 
and improving model performance. 

While this paper will not go into detail of feature selection 
algorithms, the presented methodology does rely on 
feature selection. Some options for multiple linear 
regression are forward, backward, or mixed stepwise 
selection, LASSO regression, and elastic-net. The result 
of a properly implemented feature selection algorithm is 
a reduction of independent variables to a smaller set of 
features that provide a better performing and less 
complex model. 

 

Figure 5: Feature Selection with LASSO 
Regularization 

2.5.1. Tuning a Model (Adjusting Hyperparameters) 

After the models are generated, a comparison of their 
performance on the validation set is performed. It is 
important to note that some models have input 
hyperparameters which are control inputs that define the 
final structure of a model. Adjusting these control inputs 
can impact the results of the model. 

It is appropriate to tune selected models for best 
performance. Some models do not have 
hyperparameters to tune (e.g. multiple linear regression). 

With tuned models it is again possible to check the 
results against the test set. 

LASSO regression does have hyperparameters to 
adjust. The most significant hyperparameter is the alpha 
(α) or L1 term. Succinctly, increasing the α parameter 
adjusts the optimization function to shrink more β 
coefficients to zero. This reduces the number of relevant 
independent variables that get included in the model. 
Adjust α to find a balance between bias and variance for 
the model. 



2.6. Results 

A model that has been fit to historical data from a test 
article, tuned with a validation set, and checked against 
a test set can be applied to new data from the same or 
other applicable test articles. Feeding the model new 
data is the critical step in determining if current 
measurand output is within expectations.  

Predictions should first be made on the test set of 
historical data that was held out of the training data. The 
test data can be used to evaluate the performance of the 
model before deploying the model to evaluate new data. 
Model performance is primarily evaluated by looking at 
error. Error is the difference between the model output 
and the true output for the dependent variable at a time 
step. 

The action to take based on model detection of data 
abnormalities or erroneous measurands is organization 
and test article dependent. For the purposes of this 
paper, the action is to plot the relevant time series 
(including the predicted output and the actual output of 
the flagged measurand). 

Using statistical analysis, a Root Mean Squared Error 
(RMSE), and an error distribution with standard 
deviations can be gathered. 

RMSE is a measured of how good the fit is across the 
entire test set. It is the square root of the sum of the 
squared error in the prediction at every time step divided 
by the number of time steps. the higher the RMSE the 
greater the error in the prediction.  

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑(𝑌𝑖̂ − 𝑌𝑖)

2

𝑁

 

Error distribution is a measure of the distribution of error, 
ideally centered around 0. 

The error statistics in the test set predictions are the core 
component to be compared against future data to detect 
problematic measurands. It is out of scope to explore all 
statistical measures and ways to analyze incoming data 
for abnormalities but AeroTEC has found success 
comparing test and new data RMSE and error 
distributions.  

3. METHODOLOGY – IN PRACTICE 

AeroTEC has implemented the presented method using 
data from a test vehicle. The purpose of the application 
was to use machine learning methods to detect and 
identify failed parameters in a set of test data. This 
method has aided in discovering parameter failures 
significantly faster than traditional engineering methods. 
This section will discuss the process described in section 
2 as applied to a sample test data set. 

3.1. The Dataset 

In the rest of the Methodology – In Practice section, an 
actual set of flight test data is used to show the 
application of the theory. The data is numeric and is 
composed of the response of each sensor when 
sampled during each test. Rows of the data correspond 
to samples, and columns correspond to sensors (or 
measurands). The dataset in this practice section, prior 

to any cleaning, consists of 12 unique test runs of a 
single test article. Each test is over an hour long sampled 
at 1 Hz, with over 4000 unique columns (measurands). 
The dataset includes over 144 million unique data points. 
The tests are performed with unrelated goals in unique 
test environments for the sake of conservatism. 

3.2. Exploration & Cleaning 

Per the methodology, the dataset needs to be explored 
and cleaned in a standardized fashion so that future test 
data may use the same procedures. 

An easy way to handle the data is to load it into memory 
in a tool built for handling large datasets. Tools like 
Microsoft Excel work great for visualizing small datasets, 
but larger ones require the use of development 
environments and a programming language. Python 3 is 
used in this practice section. 

Rows or columns with missing values are removed, or 
the values are interpolated, imputed, or otherwise 
handled. It is best practice to remove missing values 
entirely from large datasets. 

In the case of this dataset, the following cleaning was 
performed: 

• Data moved from database to individual HDF5 
(binary files) for accessibility 

• Removal of columns with low or no variability 

• Removal of columns with significant number of 
missing values 

• Removal of rows with missing values 

• Handling of timestamps to be standard format, 
and read by Python 

3.3. Selecting a Model 

The critical component of data preparation is to fit an 
accurate model to the data to make predictions about a 
measurand’s value based on other measurand values. 
The theory section on models discussed the variety of 
available models to use. In this section the focus will be 
on building a regularized multiple linear regression 
model. The reason is that AeroTEC has found consistent 
success in detecting unpredicted measurand behavior 
using this type of model. Following the theory section for 
selecting and using model will provide an appropriate 
model selection for specific cases. 

The overall procedure for fitting and applying a model 
can be seen in Figure 6 and Figure 7. After a model has 
been trained on historical data (step 1), it is necessary to 
evaluate its performance on the validation set of data 
(step 2). This is where a variety of regression model 
metrics are useful to determine how ‘good’ the model is. 
While it is out of scope to review model evaluation 
metrics, some useful ones are: the coefficient of 
determination, the Akaike Information Criterion, RMSE 
and MAE. After evaluating these metrics for each model 
generated, one can get a better idea of what model to 
proceed with, what hyperparameters to edit for the 
model, and an expectation for performance on test set 
data (step 3 & 4). Note that after adjusting models on 
validation sets, it is critical not to adjust the model after 
test set evaluation. If performance is not meeting 
requirements, the process starts over entirely. If model 
characteristics are adjusted after fitting to test set data, 



the likelihood for overfitting increases dramatically. After 
gathering RMSE, MAE and plotting error distributions of 
test set data model performance: it is appropriate to pass 
new data through the updated machine learning model 
(step 5). When the results are computed, evaluation can 
be performed using methods discussed in the results 
section below to determine if measurand data is within 
expectations.  

 

Figure 6: The Meat and Potatoes: Creating and 
Evaluating a Machine Learning Model 

After gathering RMSE, MAE and plotting error 
distributions of test set data model performance: it is 
appropriate to pass new data through the updated 
machine learning model (step 5). When the results are 
computed, evaluation can be performed using methods 
discussed in the results section below to determine if 
measurand data is within expectations.  

 

 

Figure 7: The Meat and Potatoes: Applying a 
Machine Learning Model to Data 

There is nuance in selecting and adjusting a model. 
AeroTEC has found regularization to be a critical step to 
apply to numeric test article data. 

3.3.1. Feature Selection using LASSO Regularization 

A LASSO regularized model has less dependencies than 
a standard multiple linear regression model. This is 

important to reduce the complexity of the model and 
reduce the likelihood that its dependencies become too 
cumbersome to maintain. In the case presented here, 
regularization for the multiple linear regression model is 
achieved through the Least Absolute Shrinkage and 
Selection Operator (LASSO) method. The impact of the 
LASSO model is that LASSO removes independent 
variables that are largely unrelated to the output. A 
reduction in independent variables in a model has the 
following effects:  

• Less failure prone. A model with less 
required measurands is less likely to lose 
one of its dependencies during test. 

• Less complexity. Simpler models are more 
interpretable by engineering and are less 
likely to fit to noise in the data. 

• More flexibility. Models with fewer 
dependencies are more likely to remain 
useable as test article measurands 
change. 

LASSO reduces the 𝛽 coefficient values associated with 

each X independent variable. See the summary 
visualization in section 2.5 above. 

4. RESULTS 

As described in section 2.6, results are evaluated after a 
model’s baseline results have been evaluated on a test 
set. New data can now be passed through the model and 
data abnormalities can be flagged. 

4.1.1. Using RMSE to Detect Abnormalities 

The root mean squared error found in the test set can be 
compared to the root mean squared error of any new 
data a model is applied to. This method can be used to 
detect many types of data abnormalities, but it is 
particularly useful for catching low magnitude, long 
duration errors. Issues like sensor drift, or out of 
calibration sensors can both be detected by evaluating 
RMSE.  

If the RMSE of any new test data exceeds some criteria 
set based on the validation set RMSE, the measurand is 
flagged for review. For instance, a basic criterion may be 
that the RMSE of the new data is over 2 times that of the 
test data. 

AeroTEC has found success in detection of faulty 
measurands due to a variety of issues using a 
comparison of test data and new data RMSE values. 

4.1.2. Using Error Distribution to Detect Abnormalities 

Using the error distribution in the validation set is a 
method for detecting short duration high magnitude 
errors. An example of a short duration high magnitude 
error is a data spike due to a temporary loss of signal. An 
error distribution of model predictions on a test set 
defines expectations for level of error in the model’s 
prediction. If actual and predicted results deviate by 
more than a set difference based on the test error 
distribution, the measurand can be flagged. Using the In-
Practice flight test data set, an example is visualized 
below. Note the dashed red error bars signifying 
boundaries for flagging a bad parameter. 



 

Figure 8: Visualization of Short Duration High 
Magnitude Error 

Using error distribution to detect abnormalities has been 
used successfully at AeroTEC for detecting common 
sensor problems like thermocouple grounding, that are 
more difficult to detect using methods like RMSE that are 
more suited to longer trending error. 

4.2. Deploying 

AeroTEC has deployed models by generating a report 
after every new test detailing what measurands may 
have failed per automated results evaluation. The 
reports can be delivered to the parties responsible for 
ensuring proper measurand operation. The reports 
include time series plots of both the prediction and the 
actual measurand result as seen on the left side Figure 
8. 

5. DISCUSSION 

Finding a solution for detecting failed measurands or 
data abnormalities using machine learning offers a 
unique capability to quickly assess the quality of test 
data. The rapid detection of failed measurands is 
valuable to a test provider as it can be used to diagnose 
system failures and reduce the number and frequency of 
repeated tests. Industry experience in test has shown 
that managing many measurands on a test article often 
becomes a herculean task. This paper has introduced 
and provided an example for any organization or 
individual to start the process of using machine learning 
methods to reduce test cost and improve timeliness in 
detecting problems with data.  

Details of the methodology in certain sections have been 
purposefully omitted to preserve AeroTEC’s intellectual 
property. An example of an omitted detail is in 
determining the algorithm’s sensitivity for detecting failed 
measurands. Sensitivity could be determined by setting 
a difference in test set RMSE and new data RMSE that 
causes a measurand to be flagged as producing 

questionable data. The same determination could exist 
for evaluating error distributions. 

Evaluating measurands for valid data after testing is a 
necessary component of preparation for data analysis, 
and of preparing for the next flight. Unfortunately, 
traditional methods of data evaluation are very time 
consuming and expensive. Machine learning models are 
a fast, reliable, and inexpensive method to provide data 
analysis. The 144-million-point data set was evaluated 
using a single commercially available laptop computer.  

The time commitment for this method comes from setting 
up the models for a dataset, especially the first time 
through. However, that time investment is a one-time 
occurrence rather than repeated effort for every test 
event. The benefit of this time investment upfront is that 
the models will last if they are still generalizing to the new 
test data. Every new test that is analyzed by the models 
is time saved for the organization in doing the analysis 
manually. At AeroTEC, we’re using the results from 
machine learning detections of data abnormalities to 
drive decision making on what measurands to 
troubleshoot, and in what way. 

Regarding future use of this capability, AeroTEC has 
tested multiple use cases outside of data abnormality 
detection. There are cases in which models can be used 
in place of new sensor installations when the cost 
difference makes sense weighed against the 
requirement for a true measurement. For instance, after 
flying a large envelope with a trailing cone, it is possible 
to build a model of its output, review the accuracy of the 
predictions, remove the trailing cone, and still gather 
predicted trailing cone response. This has the benefit of 
no longer requiring trailing cone equipment, leak checks, 
or procedures while freeing up a data system channel. 
AeroTEC has tested this capability and found accuracies 
within the error boundaries of the originally installed 
sensor. 

Another application of this technology is to run both 
modeled and true sensor responses in a telemetry room 
or onboard to make “knock-it-off” calls if the true 
response changes significantly when compared to the 
model. An example is a wing anti ice sensor that may 
rise significantly faster than a modeled value. The 
baseline model response is a suitable sanity check for 
an engineer to make a call to stop the condition before 
physical damage or an unacceptable risk level occurs. 

6. CONCLUSIONS 

AeroTEC used machine learning methods to develop a 
solution for detecting questionable data from 
measurands on a test article, then replacing with 
modeled data if required. The result is a solution that can 
monitor every measurand on a test article during or after 
test for unusual behavior. Measurands with problems are 
addressed faster with better direction on troubleshooting.  

This result affects everyone from the technician 
performing the installation up through engineering and 
data analysts to the business management. Ensuring 
accurate data is maintained through a test program 
creates improvement to test efficiency and cost. 

AeroTEC is excited to continue applying and testing this 
powerful technology and is interesting in working with 



organizations and individuals who want to evaluate this 
technology for their work. 
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